On numerical approaches to solve the generalized Nash equilibrium problem and their implementations in Julia

Tangi Migot, University of Guelph

January 23, 2020

Abstract

The generalized Nash equilibrium problem (GNEP) is an N player game, where each player has to solve a non-linear optimization problem whose objective function and constraints depend on the solutions of the other players. The GNEP is becoming a very popular modeling tool with an increasing need for numerical methods with efficient implementation. In this talk, we present two numerical approaches to tackle the GNEP: a decomposition method and a method based on nonsmooth dynamical systems. These methods have been included in a Julia (https://julialang.org) framework to solve the GNEP. We finally present numerical results on a benchmark of games from the literature.